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Abstract

Molecular docking aids in the design of materials supporting the current and future
needs of the warfighter by simulating the real-world results of combining molecules.
Specifically, it supports research and development in novel non-linear optical materials for laser-
hardening and other advanced optical applications. Potential uses for these materials range from
personnel and optical system laser protection to holographic information displays. DOCKER,
our baseline docking system, minimizes the computational overhead of the simulation by
modeling the molecules as rigid objects. This simplification can cause DOCKER’s solutions to
disagree with the real-world results, because molecules flex as they react to one another and to
other external influences, such as heat or the presence of a solvent. Our research adds flexibility
to the DOCKER model by articulating it in response to the interactive atomic forces. We
anticipate this addition will improve the model’s predictive capability by improving its overall
fidelity. Articulation also provides a basis for other extensions. These extensions include

thermal effects and computation of barrier energy along a reaction path.
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Molecular Articulation
in Response to Interactive Atomic Forces

in DOCKER

1. Introduction

Man’s desire to create has lead to the discovery of many new materials throughout
history. Initial creation of materials resulted from either accident or blind experimentation
where the chemist had no educated guess of the results. This experimentation provided the basis
of material science by identifying combinations of chemicals that created new materials and
combinations to be avoided. As time progressed, material science matured. Experimentally
combining chemicals and materials has provided chemists with the information necessary to
create specific interactions. The compilation of this knowledge over the years has improved the
capabilities of the chemist by providing the basic building blocks for creation of more complex
materials. However, the creation of new materials still necessarily involves experimentation.
Technology has caught up with science, and tools have been developed to provide easy access to
this compilation of information, assisting the chemist with new material development. These
tools include models that define the interaction of molecules at the atomic level, and tools which

use these models to manipulate molecules.

DOCKER is a molecular docking tool which simulates the combination of two
molecules to form a new material. Simulation has provided a method for chemists to test the

resultant properties of a combination of molecules. These results determine if the combination
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will meet the needs of the material they are researching without actually having to perform a
physical experiment. DOCKER allows the chemist to test different orientations between the
molecules by manipulating one of them. The overall results of applying DOCKER to the
material development field are a savings in materials and time. Experiments that will fail are
identified in a simulation before the performance of any physical experiment that will waste
materials. Identifying faulty experiments early also saves time. The chemist will not have to
perform any analysis of the results of the experiment to determine that it was a failure as the

simulation will have already provided that information.

DOCKER consists of a main program called dock and three servers: the display, energy,
and arm servers. These four individual processes communicate through message passing. Dock
drives the entire system and controls the three servers. The display server handles the graphics
necessary to display the molecules. The display is currently limited to a bond vector diagram.
The energy server does the calculations to determi'ne the total energy of the molecules in their
current orientation. The arm server communicates with the manipulator arm. This arm is an
input device for positioning the drug molecule and an output device for sensing the force of the

attraction or repulsion between the molecules.

1.1 Problem Description

The main problem with DOCKER is a lack of realism. The simulation provides
information on the interaction of the molecules, but the information is not realistic because the
molecules are modeled as rigid objects. In the real world, molecules bend and move when
interacting with other molecules. Allowing flexibility in the molecules will move the simulation

closer to results that will match the real-world interactions. Implementing articulation in




response to the interactive atomic forces within the molecules achieves this flexibility.
Articulation involves allowing each atom in the system to react to the forces app.lied to it by the
other atoms. The resulting motion will move the molecules to a low energy position, similar to a
system of springs finding a resting position, defining the actual results of docking the molecules
in that orientation. The goal of this thesis is to implement articulation in response to interactive

atomic forces in DOCKER.

A secondary problem with DOCKER is the lack of a tool to orient the molecules before
the docking simulation. The current method for orienting the molecules is a guess by the user
which only allows translation of the molecules and provides no visual feedback. This guess
wastes time because it requires the user to verify it, by loading it in DOCKER, and inevitably
correct it. The second goal of this thesis is to build an orientation tool that will allow the user to
translate and rotate the molecules using a visual display to put the molecules into an acceptable

orientation for the docking simulation.

1.2 Assumptions

Several assumptions are required to formulate my initial approach to the problem. These

assumptions are:

1. Wright Laboratories will provide access to equipment necessary to run
DOCKER. The program requires the use of the PER-Force arm and specific
machines to run the display server, energy server and arm server.
Implementing and testing my implementation of articulation will require the
use of this equipment.

2. The Virtual World will support the modification of individual objects in the
display. Articulation will require the ability to modify the location of each
vector in the display which will represent the change in the location of the
endpoint atoms.



3. The network can handle the increased traffic between the servers.
Articulation will increase the number of messages passed between the
energy server and dock, and dock and the display server.

4. Motif can support the molecular manipulation desired by the user. Motif
does not provide any manipulation of objects directly, but it does provide
tools to build the desired manipulation tools.

1.3 Scope

Articulation in response to interactive forces within the molecules affects the entire
DOCKER system. It involves changing the display system and the energy calculation system.
This project will focus only on the display system. Additionally, the project only provides
articulation at the user’s request and not during user manipulation of the drug molecule. The
purpose of this project is to provide a first step toward the implementation of articulation. This
project will demonstrate the ability of the display system to support the changes and the

increased load of information required for articulation.

The orientation tool will only implement the functions to orient the molecules. These
functions will include the ability to translate and rotate the molecules, rotate the world, and dolly
the users eye closer to or farther away from the molecules. The tool will also provide functions
to display the extent of the molecules along each axis, load molecules, and save the molecules
after orientation. Functions not included in the scope of this project are rotation of a molecule
about its center of mass, allowing the user to scoop a spherical region out of a molecule, and

make a planar cut through a molecule.




1.4 Approach Overview

1.4.1 Articulation in Response to Interactive Atomic Forces

Articulation involves three steps: getting the new coordinates for each atom from the
energy server, calculating the changes to the display, and updating the display with the changes.
As the energy calculations are out of the scope of this project, the energy server is implemented
as a stub that returns predetermined sets of coordinates. Dock calculates the changes to each
vector in the display based on the new coordinates for each atom and builds a message for the
display server. The display server accepts this message and changes the vectors being displayed.
These three steps are repeated to create a series of articulation steps that make the molecules flex

in the display.

1.4.2 Orientation Tool

The orientation tool is designed in Motif. It provides a viewing area to display the
molecules and allows the user to manipulate them with the mouse. It has a standard windowing
system menu bar to make it easier for the user to learn and use. The tool also provides a

numerical display of the extent of the molecules along each axis.

1.5 Users’ Desired Progression

1.5.1 Articulation in Response to Interactive Atomic Forces

The users of DOCKER have expressed a desire to enhance it with new functionality.
The first step in this enhancement process is the implementation of articulation at the users
request, which is the focus of this project. The next step is to implement the energy calculations

that are necessary to support articulation. These calculations will be easier to implement if the
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model used to calculate the energy is changed from the AMBER model to CHARMm. The final
step is to implement real-time articulation in DOCKER allowing the molecules to flex in

response to molecular forces at all times.

1.5.2 Display Server

DOCKER currently displays the molecules using a bond vector drawing. The users have
expressed a desire to be able to display the molecules with other drawing techniques such as a ball
and stick drawing or using various surface rendering techniques. Another area of interest is
holographic display. The ability to display the molecules as 3D holograms opens up a new area

of molecular viewing and manipulation techniques.

1.5.3 Model Construction Tool

The users desire a model construction tool to set up the molecules for DOCKER. This
tool will perform basic orientation functions such as rotation, translation, and zooming the view
of molecules. The orientation tool designed for this project performs these functions. Additional
desires for the model construction tool are to rotate a molecule about its center of mass, scoop a
spherical region out of a molecule, and making a planar cut through a molecule. Having a single

tool to perform all of these functions will simplify the setup for a docking simulation.

1.6 Thesis Overview

This thesis is divided into six chapters. Chapter two presents background information
necessary to understand molecular visualization and docking. It also discusses the history of
DOCKER and how it currently operates. Chapter three discusses the requirements placed on me
by the users and the approach that I took to solve the problem. The fourth chapter covers the

design and implementation of my solution. Chapter five presents the results of my




implementation. The final chapter discusses future work to support and enhance articulation in

DOCKER.




2. Background

2.1 Molecular Visualization

Molecular visualization provides the ability for the chemist to see what he/she is unable
to see with the naked eye. It provides a graphical representation of a molecule on an atomic
level to allow the chemist to see the structure and interactions of the atoms. In addition to being
able to see the molecule, molecular visualization has given chemists the ability to comprehend
complex sets of information about the molecules [BRYSON96]. The chemist can see different

atoms, bonds, and energy present in the system and understand how they are all interacting.

Chemist Vivian Cody, a senior research scientist and head of structure and drug design at
the Medical Foundation of Buffalo, has used molecular visualization provided by a virtual
environment designed by the University of North Carolina, Chapel Hill, to study the docking of
drug molecules in protein receptors. This technology has allowed her to discover that her
interpretation of the folding pattern of a human protein called transthyretin was incorrect. She
was able to see the folding pattern with the molecular visualization tool and gain a better

understanding of the molecule [[LLMAN94].

2.1.1 Sculpt

Mark Surles, a former student at University of North Carolina, Chapel Hill, has been
continuing his Ph.D. work at the San Diego Supercomputer Center with a molecular modeling
system called Sculpt [SURLES94]. The Sculpt system is a molecular visualization system
designed to allow a chemist to interact with a molecule by tugging an atom within it. The model

then adjusts the remaining atoms in the molecule until it reaches a minimum energy orientation,




much like a series of balls attached by springs would eventually reach a minimum energy
orientation and stop bouncing. The system was designed to be used on protein molecules and

takes advantage of the protein structure to simplify the calculations that must be performed.

2.1.2 GAME

Another example of a molecular visualization tool is the GAME (Graphic Adjusted
Monopole Expansion) algorithm created by students at the Universitit Stuttgart in Stuttgart,
Germany [HAYD95]. This algorithm is a new method for calculating and displaying the
electrostatic potential of a molecule. The students accomplished this by defining a surface which
encompasses the molecule and representing the electrostatic potential with color codes at user
defined points on the surface. They demonstrated that this representation is useful in

determining how a drug molecule will interact with a protein molecule during a docking task.

2.1.3 Material Research

At the Tohoku University in Japan, researchers have studied the formation of ultrafine
gold particles on an MgO(100) surface using molecular visualization [KUBO95]. They were
able to show at low temperatures, gold particles dropped on the MgO surface were drawn
together to form clusters. Furthermore, they were able to show the cluster would form at the
location of a point defect in the surface of the MgO surface. Controlling the placement of the
point defects allowed the researchers to control how the clusters formed. This discovery is

significant because it could be used to design atomically controlled thin films and catalysts.




2.1.4 Computing Smooth Molecular Surfaces

Students at the University of North Carolina, Chapel Hill, have developed a method for
computing and visualizing smooth molecular surfaces [VARSHNEY94]. A smooth molecular
surface of a molecule is defined as the surface an exterior probe sphere would touch as it rolled
over the atoms of the molecule. Their method is significant because it parallelizes easily and
scales linearly with the number of atoms in the molecule making it very efficient. Their method
is also useful to chemist because it visualizes the changes that occur within a molecule during

manipulation of the molecule as in molecular docking.

2.2 Molecular Docking

In addition to visualizing molecules, chemists have been interested in the process of
combining molecules to create new materials, medicines, and chemicals. This process, known as
molecular docking, consists of determining the best orientation for attaching two molecules to
form a single molecule. By selecting molecules with certain properties, chemists can create a

molecule with a desirable combination of properties of the original molecules.

When discussing molecular docking, chemists refer to the two molecules as a protein
and a drug. The original focus of molecular docking, and still the major focus to date, is the
medical field. In this field, molecular docking is used to determine ways to dock drug molecules
with actual or synthetic protein molecules. The goal is to find a drug that would inhibit, prevent,
or modify some specific reaction in the protein molecule, thereby producing a cure or other
therapeutic effect. An example of this application is cancer research in which molecular docking
is used to find new binding orientations for anticancer drugs with human enzymes which are

chemotherapy targets [ILLMAN9%4].
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Molecular docking in the materials research field has adopted the terms protein and drug
to refer to the molecules which they attempt to dock. The protein (also known as the receptor)
refers to the static molecule which the drug molecule is being attached to. The drug molecule is
usually the smaller of the two molecules and is manipulated by the chemist to probe the protein

to locate a desirable docking position.

There are several methods the chemist can use to determine the best or desirable docking
position of two molecules. The first is the total interaction energy in the system. The interaction
energy in the system represents the net attraction or repulsion between the molecules. The lower

the total energy is, the more attractive and stable the docking position will be.

The second method is to use an analysis tool after the docking position has been
determined. This will provide the chemist with information about the final position of each atom

in the system and several other qualities of the molecule including its energy level and stability.

2.2.1 Water Purification Study

Researchers at the Tohoku University in Japan have been using molecular dynamics and
molecular docking techniques to study methods for removing NO, from a water supply
[HIMEI9S]. Their research focused on Ga-ZSM-5 and its role in the process of removing NO,
from water. They used molecular docking and quantum chemistry to determine how the

molecules would combine and based their conclusions on the results.

2.2.2 Cancer Research

The Environmental Protection Agency (EPA) has announced that they will require

molecular data on how chemicals cause cancer [STONE95]. The EPA is driving a shift from the
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method of giving an animal high doses of a chemical to determine its cancer risk, which can
provide misleading information, to demonstrating how the chemical will cause cancer. The
molecular data requested by the EPA will require chemist and biologists to use molecular
docking and molecular dynamics tools to show at the atomic level how the chemical interacts

with the body of the host causing the cancer.

2.3 Molecular Research at the University of North Carolina, Chapel Hill

The University of North Carolina, Chapel Hill, has been working in molecular docking
since 1967. The work at UNC was inspired by the vision of Ivan Sutherland. In 1965 Ivan
Sutherland set forth his vision of “The Ultimate Display” as a window into a virtual world that
incorporated visual, auditory, and haptic interaction [SUTHERLAND65, BROOKS90]. Haptic

refers to the sense of touch as well as the sense of where one’s limbs are in space.

GRIP was a molecular fitting system developed at UNC [BRITTON77]. The system
allowed the chemist to adjust individual atoms in a molecule to an optimum fit against electron
density distributions [BROOKS88]. The GRIP system was originally designed as a
pharmaceutical application [BENNETT92] and, according to its users, was the first to solve a

new protein entirely with virtual models.

The Raster Molecule Docking System allowed the chemist to dock a movable drug
molecule to a static protein molecule [PALMERS87]. The drug was represented as a thin stick
figure and the protein was represented by spheres with thin cavities that the drug could be moved

into [BROOKSS88]. This system also provided collision detection for the user.

Project GROPE was another molecular docking system developed at UNC [BATTER71,

KILPATRICK76, OUH-YOUNG90]. In this system, the chemist maneuvered the drug molecule




with a manipulator arm to find a site to dock it with the protein molecule. The manipulator arm
allowed the chemist to feel the electrostatic forces and collision forces as the molecules
interacted, as well as providing visual feedback. Audible clicks were also added to notify the
chemist that a collision had occurred [BROOKS88]. This project, the predecessor to the
DOCKER program used at the Wright Laboratories, touched on all of the areas that were

outlined in Sutherland’s vision as vital to “The Ultimate Display”.

2.4 DOCKER at Wright Labs

2.4.1 Structure of DOCKER Program

DOCKER is a molecular docking program which was initially developed by the
University of North Carolina, Chapel Hill. The program is designed to communicate with three
servers to coordinate the docking task. The display server is currently run on a Silicon Graphics
Inc. (SGI) graphics workstation and is responsible for drawing the molecular graphics and
getting user input through an interactive menuing system. The ARM server is run on an Intel
80386 and is responsible for controlling the PER-Force force-reflective arm which is the
interface allowing the chemist to provide input to move the drug molecule and receive output of
the total force on the drug molecule. The final server is the energy server which is currently
implemented on an Intel Paragon and is responsible for calculating the interactive forces between

each atom and the total energy in the system.

2.4.2 Energy Model

The energy calculations are currently done using the AMBER force model developed by
the Department of Pharmaceutical Chemistry at the University of California, San Francisco.

This model was specifically designed to simulate proteins and amino acids. The model uses a
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relatively noncomplex calculation to determine the energy in the system taking into account the
bond energy, bond angles, dihedral torsion, van der Waals forces, electrostatic forces, and

hydrogen bonds [WEINERS84].

The first term in the energy equation is a summation of all bond energy in the system.
Bond energy is determined by the two atoms that are bonded together and the distance between
them. Each pair of atoms that can occur in a protein or amino acid has a specific equilibrium
distance and bond energy constant which are determined from empirical data. If the atoms are at
their equilibrium distance, the bond contributes no energy to the system. If the atoms are not at
their equilibrium distance, the bond will contribute an amount of energy to the system based on

the difference between the actual distance and the equilibrium distance.

Figure 2-1: Molecular Bond Angle.

The second term is a summation of all bond angle energy. The bond angle is determined
by three bound atoms (Figure 2-1). Similar to bond energy, each combination of atoms has a
specific equilibrium angle and energy constant that are determined from empirical data. If the
atoms are at their equilibrium angle, the energy contribution of the angle is zero. If the atoms are
not at their equilibrium angle, the bond angle will contribute an amount of energy to the system

based on the difference between the actual angle and the equilibrium angle.

The third term in the equation is the summation of the dihedral torsion in the system.

Dihedral torsion is determined by the rotation angle of the center bond of four bonded atoms

2-7




(Figure 2-2). Again, there is an equilibrium position and energy constant which are determined
from empirical data. If the dihedral is in the equilibrium position, it contributes nothing to the
system’s energy. If the atoms are not in the equilibrium position, the dihedral contributes an
amount of energy to the system based on the difference between the actual position and the

equilibrium position.

Figure 2-2: Dihedral Torsion or twisting of the center bond.
The fourth term in the energy equation is a combination of the van der Waals and
electrostatic forces. Van der Waals forces are the weak attractive forces that exist between all
atoms, even those with like charges. These forces increase as the atoms get closer to each other

until a certain distance is reached and they become repulsive.

Electrostatic forces are the interactive forces between atoms based on their charges. This
charge is usually due to a lack of electrons, yielding a positive charge, or an abundance of
electrons, resulting in a negative charge. An atom can also have a partial charge if it is sharing

electrons with other atoms.

The final term pays specific attention to hydrogen bonds. These bonds are not handled
in any other term in the equation because they are very weak bonds which are easily created and

broken. This volatility allows the chemist to fine tune the hydrogen bond distances and energies

to desired values.




2.4.3 Modifications

The Wright Labs has made two modifications from the original UNC DOCKER
program. The first is the replacement of the Argonne E-3 Remote Manipulator arm, added in the
GROPE-III project, with a PER-Force force-reflective arm. The chemist uses this arm to
manipulate the drug molecule and feel force interactions between thé drug and protein molecules

[LUPO95_1].

The second modification is the addition of the Intel Paragon. The energy server can be
moved to the Paragon to run the energy calculations in parallel speeding up the calculations and
allowing the system to handle larger molecules. The addition of the Paragon also provides the
flexibility to replace the AMBER force model with a more complex force model in the future

and to add additional functionality to the energy server.

2.5 The DOCKER Process

The process used to determine a docking position between two molecules with the
DOCKER program involves three major stages: preprocessing, docking, and postprocessing
[LUPO95 1, LUPO95 2]. The preprocessing stage (Figure 2-3) includes nine steps. The first
step is to build the molecules in Cerius’ or load molecules that have already been built. The
chemist must then trim away parts of the molecules that will not affect the docking area to
simplify subsequent energy calculations. The third step is to convert the molecular files to the
DOCKER-readable .lg format with msi2lg. Next, the chemist moves both of the molecules to the
origin in world space. Since the molecules are now overlapping in world space, the chemist
must translate the molecules to correct their relative positions. In step six, the chemist creates a

.gi file to define the extent of a grid encompassing the molecules in world space. The seventh




step involves creating all of the remaining files necessary for DOCKER to run by executing the
MD_ATOM and MP_LG scripts. This step takes on average 20 minutes to execute. Next, the
chemist can load the molecules into DOCKER to see if the initial orientation leaves enough
room for the exploration of the desired docking sites. If the extent of the grid leaves the protein
backed into a corner or empty space on the wrong side of the protein, the chemist must exit the
DOCKER program and repeat steps four, five, six, and seven. Once the orientation is

acceptable, the chemist can proceed to the docking stage.
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Figure 2-3: Preprocessing Steps for Running DOCKER.

The second stage of the process is the actual docking simulation (Figure 2-4). In step ten
of the process, the chemist probes the protein molecule with the drug molecule to determine a

desirable location for the drug to dock with the protein. Input to move the drug is provided by
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| the chemist through the PER-Force arm. The docking process is aided by visual and haptic cues.
The visual feedback tells the chemist about bond and interaction forces. The force cues, through
the PER-Force arm, tell the chemist the approximate magnitude of repulsive, attractive, and
torque forces present in the simulation. Once a desirable docking location is identified, the

coordinates can be saved to a file.
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Figure 2-4: Docking and Postprocessing Steps for Running DOCKER.

The final stage of the DOCKER process is the postprocessing (Figure 2-4). Step 12 in
the process involves converting the saved files from the DOCKER format to .msi format that
Cerius® can read using /g2msi. This step requires the original protein and drug fragment files

that were produced in step two. The /g2msi utility uses the same structure from the original file
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with the new coordinates from DOCKER. The next step is to overlay the fragment files obtained
from DOCKER with the entire protein and drug molecules. The 14th step is to take the final
confirmation, the complete protein and drug molecules that are in the configuration saved in the
DOCKER program, and analyze it using Cerius®. Based on this analysis, the final conformation

is given a rating for comparison with other final conformations obtained from DOCKER.

2.6 Conclusion

The preceding summary of the current process has demonstrated that there are some
problems in the process, such as the loop back in step nine, which waste the chemist’s time and
resources. A more detailed analysis of the problems in the process and an approach to address

these problems will be presented in the next chapter.

DOCKER has a long history at UNC. Over the past 30 years several projects have been
completed to extend the functionality of the program to the current product being used at the
Wright Laboratories. The following chapter will include a detailed analysis of the current
DOCKER program and an approach for implementing the modifications proposed in chapter one

which are intended to extend the functionality of the program.
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3. Approach

3.1 Analysis of the Problem

3.1.1 Orientation Tool

As demonstrated in Chapter 2, the ad-hoc orientation of the molecules in steps 4 and 5
(Figure 2-3) leads to the need for reorientation of the molecules after the chemist views them
with DOCKER. The overall goal of the orienfation tool is to save the chemist time in the
preprocessing stage of the DOCKER process. It accomplishes this goal by replacing steps four,
five, six and eight in the DOCKER process and virtually eliminating the possibility of looping
back through step nine (Figure 3-1), ensuring that the user does not have to execute the scripts to

build the display files in step seven more than one time.

Continue with
docking proced
1. Build molecules BAD 8. Checkggiéntation of OCng procecire
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Figure 3-1: Preprocessing stage of the DOCKER process with the orientation tool implemented.
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3.1.2 Articulation

The main problem with DOCKER is its lack of realism. This is due to the fact that
DOCKER models the molecules as rigid objects. This is a simplification of the real-world
interaction of molecules in which they flex. Articulation is a method for allowing flexibility of
the molecules in DOCKER. It is achieved by allowing the atoms to independently move in

response to external forces, such as other atoms or heat.

The addition of articulation improves the overall fidelity of DOCKER. This
improvement is illustrated with an example of the bond angle energy from. the AMBER force
field equations used to calculate the interaction energy in the system (section 2.4.2). In a rigid
model, the bond angle will never change. This means that the energy contributed by that angle
will also never change. Conversely, in a flexible model, the bond angle can change. This
motion will cause the bond angle to contribute different energy values to the overall interaction
energy. This difference is then added to the other differences in each bond angle in the system.
The other four components of the AMBER model will also react similarly illustrating the
difference in interaction energy values between a rigid and flexible model. Knowing that the
real-world interaction is flexible, we can see that adding flexibility to the model improves the

overall fidelity of the model.

3.2 Analysis of DOCKER

The molecular docking process involves three stages: preprocessing, docking, and
postprocessing. The analysis of the DOCKER system will focus on each of these stages

individually.

3-2




3.2.1 Preprocessing Stage

The preprocessing stage involves creating the molecules, converting them to the
appropriate format for DOCKER, orienting the molecules that are to be docked, and building the
files necessary for DOCKER to display them. Appropriate tools are currently in place to create
and convert the molecules and to build the display files; however, the orientation of the
molecules is not supported. This orientation is done in an ad hoc manner that involves the user
guessing the proper transformations to apply to the molecules without a visual representation.
The lack of a proper tool usually forces the user to build the display files, a process which on
average takes 20 minutes, view the orientation of the molecules with DOCKER, determine what
the transformations should have been, and repeat the orientation and file building process with

the correct transformations.

3.2.2 Docking Stage

The docking process is controlled by the dock program. To accomplish the docking task,
dock uses three servers (Figure 3-2). The display server controls the presentation of the
molecules and other visual cues, the energy server handles the calculation of the energy and
force interaction in the system, and the arm server controls the input from and output to the PER-
Force arm. Since the energy and arm servers are each implemented on different machines, dock
must communicate with them over a network through message passing. The display server is
implemented on the same machine, but it is a separate process, so it also communicates with

dock using messages.




Display Server
SGr* Energy Server 386 PC
Intel Paragon

* Currently the same machine as Dock

Figure 3-2: DOCKER System with the dock program controlling the energy, arm, and display servers.

3.2.2.1 Display Server Communication

The University of North Carolina, Chapel Hill, designed a display environment called
the virtual world. It was intended to be a generic graphics system that could be used to display a
multitude of objects. The display server uses the virtual world system to display the molecules

and other visual cues in DOCKER (Figure 3-3).

The virtual world uses GL to display point, vector and polygon primitives. These
primitives are organized into groups. Each group has properties associated with it such as a
color to draw or a transformation matrix. Groups are organized into larger groups until the entire

system to be drawn is in a single group. The draw functions then draw from the top group down.
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Energy Mins

Figure 3-3: Example of the DOCKER display.
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Dock builds its groups for the virtual world display by first dividing the molecules into a
protein and drug group. These groups are subdivided across rotatable bonds, bonds about which
a portion of the molecule can be rotated without rotating the portion on the other side of the bond
(Figure 3-4). These groups are then subdivided by atom type. Dock then adds vectors to these
subgroups representing the bonds that originate from the atoms in each subgroup. This structure
makes it difficult to update the vectors individually when the locations of the atoms change
because dock needs to know which group and subgroup the atom is located in and which vector
in the list represents the bond that is intended to be updated. Currently, this information is

known only by the preprocessing applications and the display server.

NG
O

Figure 3-4: Rotatable Bond: Part A of the molecule can be rotated about the highlighted rotatable bond’s axis
without rotating part B of the molecule or vice versa.

When dock communicates with the display server it must use the virtual world structure
to tell the server the location of each bond vector. Appendix A contains a description of the
message codes that are used to accomplish this communication. An initial message is required to
add the vectors to the display and subsequent messages can be used to update those vectors when

the locations of the endpoint atoms have changed.




3.2.2.2 Energy Server Communication

The communications with the energy server are much less complex than those with the
display server. Dock sends the energy server a message containing an integer code (Table 3-1)

followed by a set of transformation matrices for the groups of the drug molecule.

Code Function
0 Drop the connection to the energy server
1 Request energy between the protein and
drug molecules and the drug and itself
2 Request the energy server to minimize the
energy in the system (This function is not
yet implemented in the energy server)

Table 3-1: List of the request codes that dock can send to the energy server.

The set of transformation matrices following the request code tell the energy server
where the drug molecule is. The matrices have a transformation matrix for the entire drug
molecule. They also have a transformation matrix for each rotatable group of atoms in the drug
molecule. The product of these two matrices and the original coordinates of each atom gives the
actual locations of the drug atoms during the docking process. The locations of the protein
atoms are unchanged during docking since the protein molecule is static. The location for each

atom is used by the energy server to calculate the energy in the system.

After a request is made to the energy server, dock calls a get function which reads the
requested information from the energy server socket. This function waits until all of the
requested information is received before allowing the program to continue. Once the data is
received, a message is built to send to the display server updating the energy level display. The

forces are then sent to the arm server to update the force reflection through the arm.
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3.2.2.3 Arm Server Communication

Communications with the arm server consist of two requests. The first is a request for
the current position of the PER-Force Arm. The arm server translates the input it receives from
the arm joints into an orientation matrix and velocity vector in the arm frame of reference which

is then returned to the calling program.

The second communication request is to update the forces on the arm. Dock sends this
request to the arm server followed by force and moment vectors which represent the desired
force on the arm based on the energy calculations. These vectors are translated by the arm server

into commands to the arm joints.

3.2.3 Postprocessing Stage

Postprocessing is done by a separate tool, Cerius®. This requires the user to save a
docking position that he/she feels is a good position, exit the DOCKER program, load the
molecules into Cerius®, and run the analysis. The only information the user has when running
DOCKER is the energy of the system and the force feedback to the arm. Providing the user with
additional information about the final position of the molecules could save the time of storing

and analyzing some undesirable docking positions.

3.3 Requirements for the Extensions to the DOCKER Program

3.3.1 Orientation Tool

I have designed an orientation tool to enable the chemist to orient the molecules with

respect to one another. This tool has several requirements levied by the user. The first is to



provide a visual interface to the user allowing him/her to put the molecules in the exact position

desired before building the display files and loading them into the DOCKER program.

The second requirement is to provide the ability to manipulate the molecules using a
mouse. The tool must provide the ability to individually translate and rotate each molecule and

rotate both molecules together.

The tool must also provide a function to create a .gi file. This file defines the extent of
the grid containing the molecules and some other information required by the dock program such

as grid resolution and whether or not to include electrostatic and van der Waals forces.

The fourth requirement is to ensure the tool was interactive. The tool must have a very

small delay between the action of the user and the reaction of the system.

The user must be able to display the tool on a SUN workstation as well as an SGI
workstation. This is necessary because many of the chemists that will be using the tool have
access to SUN workstations and need to be able to run the preprocessing steps remotely, setting

up a DOCKER session on their workstation for lack of access to an SGI workstation.

The final requirement is to write the tool in C. This is because the maintainers of the

tool are already familiar with C and they have the tools, compilers and libraries, to maintain it.

3.3.2 Articulation in Response to Interactive Atomic Forces

Articulation in response to the atomic forces allows each atom in both the drug and
protein molecules to independently react to the forces applied to it by the other atoms in the
system. My design of the articulation is governed by several user requirements, the first of

which is to use the virtual world. DOCKER was designed to use the virtual world and there are




several hooks throughout the code to the virtual world display system. The users were concerned

that moving away from the virtual world would cause problems in the rest of the system.

The implementation of the articulation must not adversely affect the performance of the
rest of the system. The users of DOCKER feel that any decrease in the current performance of

the program will be unacceptable.

The third requirement is to provide several updates during the articulation process.
Applying several updates allows the atoms to move in an animated fashion to their final
positions. This provides the user some feedback that the process is proceeding and allows the

user to determine if it is necessary to stop the process before the atoms reach their final positions.

Another requirement is to lock the drug molecule during the articulation process. This
means that the user cannot manipulate the drug molecule while the system is articulating. This is
necessary because the articulation will not be occurring in real-time so it will not be able to
provide interactive results without slowing the entire system down and violating a previous

performance requirement.

The fifth requirement is to write the modifications and additions to DOCKER in C. This

is for the same reasons as the requirement for the orientation tool and because the rest of

DOCKER is implemented in C.

The ultimate goal of the articulation is a minimum energy orientation of the molecules in
their current positions with each atom in a position such that the sum of the forces on it are
minimized. This information tells the chemist what the final molecule will look like with the

protein and drug docked in that position. With this information, and the information previously
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provided by DOCKER, the chemist can determine if the molecule will have the desired

properties of the needed material before analyzing it with a postprocessing tool.

3.4 Approach to the Design

3.4.1 Orientation Tool

The first design decision necessary was the selection of the language to build the tool in.
The initial suggestion of the user was Motif, but Inventor was also considered. The decision was
made to go with Motif for several reasons. The first was that the Inventor program had so much
overhead, it performed very poorly on the systems the user was running. This poor performance

violated the requirement to be interactive.

The second reason Motif was chosen over Inventor was the requirement to be able to
display the tool on a SUN workstation. The SUN workstations used at the Wright Labs have the
Motif libraries to support displaying a Motif program but can not support displaying an Inventor

program.

Once Motif was chosen as the language, a decision had to be made about the design of
the user interface. The user interface is intended to follow the standard windowing system

design. Chapter four will present the specific details of the design of the user interface.

After reviewing the requirements that were provided by the user, I determined that there
was a function that was overlooked: the ability to dolly the molecules back and forth. This
function is necessary because there may be some molecules that will be large enough to extend

beyond the edge of the display window. The user needs the ability to move his/her eye point




further back so the entire molecule can be seen in the display window at one time. The user may

also want to move in closer to the molecules for detailed work on smaller molecules.

3.4.2 Articulation in Response to Interactive Atomic Forces

Articulation allows the atoms in each molecule to react to the forces applied to it by the
other atoms in the system. This requires the ability to modify the display to reflect the motion in
the molecules. This brings up the question of how to modify the objects in the virtual world.
My initial ideas included modifying the virtual world to allow modification. After researching
the virtual world system, I was able to determine that it was already designed to allow the user to
modify the objects in the display. With that structure in place, the display server need not be

modified.

Knowing that the virtual world can modify an object with the appropriate message, the
dock program must be modified to produce this message. To construct an update message for
the display server, the program needs to know the structure of the objects. Specifically, dock
needs to know which vectors are in each group. This structure is determined in the
preprocessing stage of the DOCKER process. The decision I need to make is how to get this
information. My initial idea was to reproduce the process that was accomplished in the
preprocessing stage to reproduce the structure of the groups. Since the program would waste a
lot of time rebuilding the structure, [ have decided to focus on saving the initial structure from
the preprocessing stage and passing it to dock. This is accomplished by writing the group
structure to a file that dock can load and read when it must build an update message for the

display server.
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The next decision to be made is how to implement the articulation commands in dock. I
have decided to implement the articulation as a loop within the main dock loop. There are three
reasons for this decision. The first is to lock the user out during the articulation process. The
articulation loop executes until the user enters a ‘q’ from the keyboard or the articulation is done.
The user cannot manipulate the drug because the arm input is not read within the articulation

loop. Once the loop is exited, the user can manipulate the drug again.

A second reason is to make it easier to do the articulation in several steps. The program
will automatically repeat the articulation request without requiring input from the user. This

meets the requirement to do the articulation in several updates.

The final reason for implementing the articulation in a loop is the requirement that the
articulation not affect the performance of the rest of the system. Articulation will not be done
until the user enters the articulation loop. If he/she does not enter the loop, the system will

perform as it had before articulation was implemented.

Once the user has run the articulation, the atoms in each molecule will be in a new
orientation. Since the chemists using DOCKER normally explore several docking positions in a
single session to determine the best, he/she needs a way to return the atoms to their original
orientation to explore another position. This is the reason that I have included a reset option in

the main loop of dock with the articulation option.

3.5 Conclusion

This section has presented an analysis of the code in the DOCKER program and a

summary of the requirements of the orientation tool and extensions added to DOCKER, and the
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approach taken to get to my initial design. The next chapter will discuss the details of the

implementation of the orientation tool and the extensions to DOCKER.
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4. Design

4.1 Orientation Tool

The orientation tool (Figure 4-1) is implemented in C and the user interface is
constructed using Motif. The structure of the user interface is in figure 4-2. The Shell and
MainWindow contain a Form widget which allows objects to be placed within it and attached to
its sides. The Form widget contains a MenuBar which has two pulldown menu buttons and a
help button. The DrawingArea provides an area to display and manipulate the molecules. The
Label widgets provide areas to display information for the user. Finally, the Scale widget
provides the dolly function to the user. These functions will be discussed in more detail in the

following paragraphs.

Molview

File Options

Figure 4-1: Orientation tool layout.
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| File PulldownMenu | | Options PulldownMenu | | Help Button |

—{ Load Protein File Button I Toggle Double Buffering Button|

—-| Load Drug File Button |

— Save Protein File Button |

H Save Drug File Button |

— Create and Save .gi File Button |

* Multiple Label Widgets are represented by
. Quit Button | one block in the diagram.

Figure 4-2: Structure of the Motif widgets in the orientation tool user interface.
4.1.1 MenuBar

4.1.1.1 File Menu

The design of the file menu follows standard windowing system conventions. It appears
first in the MenuBar and contains standard functions to allow the user to load files, save files,
and quit the program. These standard conventions make it easier for the user to learn and use the
system since the functions are located in the same places as in other applications that the user is

likely to be familiar with [NIELSON93: 28-29, 90-91, 132-133].
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4.1.1.1.1 Load Files

The load buttons allow the user to select and load a protein and drug file. When the
button is selected, a file selection window pops up allowing the user to search through his/her
directories to find the correct files to load. The program allows the user to load a single
molecule or both a drug and protein. If a protein/drug file is already loaded when a new

protein/drug file is loaded, the new file replaces the old.

The load function expects that the files are in the standard large file, .Ig, format. In this
format each atom in the molecule has seven pieces of information: atom element name, x, y, and
z-coordinates, partial charge, van der Waals radius, and atom type. This information is loaded

into an array for use later in the program.

4.1.1.1.2 Save Files

The save buttons allow the user to save the protein and drug files individually. Pressing
one of the save buttons pops up a file selection window allowing the user to specify the name of

the file to save and its host directory. The file is saved in .lg format.

The same array of information that was read in the load function is written to the output
file in the save function. The coordinates for each atom may have been modified with the
manipulation functions that the program provides but the other information will be unchanged.
This information will remain accurate because the program does not modify an atom’s
orientation with respect to the other atoms in the molecule which may affect the partial charge.
It also does not change the atoms themselves which would affect the atom type and van der

Waals radius fields.




4.1.1.1.3 Create and Save .gi File

The .gi file contains information for DOCKER about the extent of the two molecules in
angstroms, the grid resolution, and some other information flags, such as whether or not to
include electrostatic and van der Waals forces. Selecting this button pops up a file selection
window allowing the user to specify the file name and directory the .gi file should be stored in.
The extent of the molecules is determined from the actual minimum and maximum coordinate
value along each axis. The remaining information is filled with default values as specified by the
DOCKER users as the most often used values. The user can modify the default values in the file

with another editor after creating it with this program if it is necessary for his/her simulation.

4.1.1.2 Options Menu

This menu contains the button that allows the user to toggle the double buffering on and
off. When the program starts, the double buffering is on and the user has to toggle it if he/she

wants it off.

4.1.2 DrawingArea

The DrawingArea is the window that the program draws the molecules in. It also

provides functions for manipulation of the molecules.

4.1.2.1 Display

The program uses a perspective projection (Figure 4-3) to display the molecules in

the DrawingArea. It also multiplies the screen coordinates by a scale factor because the
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extent || |extent * scale

vp

eye

Figure 4-3: Perspective projection used to calculate the scale factor: ws is the smaller of the height or width of the
DrawingArea, eye is the distance from the object to the eye point, extent is the width of the square area to be
displayed, and vp is the distance from the object to the viewing plane.

extent of a typical large molecule will only be around +20 to -20 angstroms. Without the

scaling factor, the user would be unable to see the details of the molecules. The scaling factor, as

derived from figure 4-3, is

ws  extent x scale )
eye — vp eye
scale = WS > eye @)

extent x (eye — vp)
This scaling factor will expand the extent to a size that will completely fill the DrawingArea.

This may leave the user little room to manipulate the molecules, so equation (2) is multiplied by

an additional factor of one half to provide some extra space

ws x eye

scale =

. 3
2.0 x extent x (eye - vp) ®)
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The program uses a right-handed coordinate system which is widely used by physicists
[NIELSON93: 123-129]. The display plane is the x-z plane with positive x toward the right of
the screen and positive z toward the top. The user is looking down the negative y-axis towards

the origin.

4.1.2.2 Molecular Manipulation

The user manipulates the molecules in the DrawingArea with the mouse. Motif provides
the ability to determine which mouse button is pushed, how far the mouse is dragged with the
button pressed, and when the button is released. These functions are used to tie the translation

and rotation functions to the mouse buttons.

The left mouse button translates a molecule. The user has to press the left mouse button
over a molecule. The program then executes a callback function with information about where
the mouse was on the screen when the button was pressed so the program can determine which
molecule the mouse is over. If both molecules occupy the point the mouse was pressed over, the
drug is selected. This selection is made because the drug molecule is almost always smaller than
the protein. If the protein were always selected first and it completely overlapped the drug, there
would be no way to select the drug without moving the protein. With the drug always being
selected first, there will almost always be a portion of the protein molecule that is not

overlapping the drug molecule to allow the user to select it.

After selecting the molecule, the user drags the mouse with the button held down to
translate it. Another callback is executed when this motion occurs with information about where
the mouse is. The difference between the previous location and the current location tells the

program how many pixels the mouse has moved in the x and y directions. These translations
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scaled down by a factor of ten are used to translate the molecule in the display. The factor of ten
slowed the motion on the screen enough to correlate the mouse motion with the molecular
motion. Without it, the molecule would be translated one angstrom for each pixel the mouse

moved on the screen.

The center button provides the rotation function for the molecule that is under the mouse
when the button is pressed. With this function, the change in x and y position are used to create

an angle of rotation, in radians, about the x and z axis respectively.

The right button on the mouse rotates both molecules in the same manner as the center
button does for an individual molecule. If there is only one molecule loaded when this function

is executed it only attempts to rotate the molecule that is loaded.

Each of these functions modifies the location of each atom in the molecule. The array
that was loaded for each molecule in the load file step contains the coordinates of each atom.
When one of the manipulation functions is executed on a molecule, the coordinates of each atom
in this array are modified with the translation or rotation. When the user saves the molecule, the

coordinates in the array for that molecule represent its current location in the display.

4.1.2.3 3D Effects

To create the illusion of three dimensions in the display the program uses Painter’s
algorithm. The atoms that are further back in the scene are drawn before the ones that are closer
to the eye point. This makes it appear that the closer atoms are in front of the other atoms and

becomes very noticeable when the molecules are translated or rotated.




Another method used to create the illusion of 3D is in the drawing of the atoms. The
program draws two circles to represent each atom. The first circle is a darker circle centered on
the x and y screen coordinates of the atom. The second circle is a lighter circle that is smaller
than the first and is drawn on top of the first circle slightly off center. This gives the effect of a
light source next to the user’s eye point that is casting light on a sphere. This representation is
not as visually pleasing as actually displaying the atoms as spheres but it is much less costly.
Inventor was explored as an alternative for the display but was dismissed because it performed
much too slowly. This was because the atoms were represented as actual spheres which contain
several hundred polygons each. The effect was that the atoms appeared to be smooth 3D
spheres, but the overhead of tracking all of the polygons and lighting effects proved to be

unnecessary, as compared to the effect achieved with Motif, and unacceptable to the user.

4.1.3 Label Widgets

The label widgets display information on the current extent of the molecules along each
axis and the volume of this extent in angstroms. Every time the program redraws the display, the
values for the maximum and minimum extent along each axis and the volume are calculated and
printed to the appropriate label. When the .gi file is created, the current extent values displayed

in the labels are used to define the extent in the .gi file.

4.1.4 Scale Widget

The scale widget creates a slider to change the scale of the molecules that are displayed.
When the user clicks on the slider and drags the mouse, the program executes a callback function
that takes the current position of the slider and adds it to the extent of the display. As the extent

gets larger, the molecules in the display are drawn smaller and vice versa.
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The size of the circles drawn to represent the atoms also changes as the slider is moved.
The size is determined by the ratio of the new scale factor to the original factor. As mentioned

earlier, the scale factor is influenced by the extent of the display.

4,2 Articulation in Response to Interactive Atomic Forces in DOCKER

Articulation in DOCKER affects four major sections of the program: preprocessing
tools, dock, the energy server, and the display server. The preprocessing tools are modified to
provide dock with the structure of the vectors in the virtual world message format. The dock
process does the bulk of the work to handle the articulation function. The energy server provides
the updated coordinates necessary for the articulation. The display server does not require
modification but supports a major portion of the articulation load. Appendix B provides a listing
of the files that are affected by the implementation of articulation including a short description of

the changes made to each.

4.2.1 Preprocessing

The tools groups_to_vw and protein_to_vw are used to create the virtual world messages
that add the molecules to the display. These tools now build an articulation file in addition to the

virtual world files (Figure 4-4).




VW

protein_to_vw vw.split

.art

dock

.atom
heir

atom.vw,

groups_to_vw

“atom
yw
split

.atom.art

Figure 4-4: Files that are created from the protein_to_vw and groups_to_vw tools in the preprocessing stages of the
DOCKER process with the addition of the articulation files highlighted.

The articulation file contains the group structure of each molecule. As the tools
determine the group structure and the vectors contained in each group, they also write this
information to the articulation file. When the tools are done, the virtual world file contains the
message to add the vectors to the display and the articulation file contains the information

necessary to update the vectors when they change.

The structure of the articulation file (Figure 4-5) is based on the virtual world message
structure. Each group in the virtual world structure containing vectors is included in the
articulation file followed by the source and destination atom number for each vector in the
group. This allows dock to know which vectors are in each group when it needs to update the
display. Each group is terminated with a sentinel of two negative ones. This sentinel was

chosen because it is unique, since the atom numbers can never be negative.
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51
27
38
-1-41
52
72
45
15
-1-1
etc.

4.2.2 Dock

4.2.2.1 Articulation

The articulation option is the keyboard selection, ‘a’, in the main dock loop. When ‘a’ is
selected the program enters an articulation loop that only exits when the articulation is complete,
the user enters a ‘q’ from the keyboard, or an error occurs. The articulation loop performs three

functions in each iteration: request an articulation update from the energy server, get the update

Group Number 51

Vector from atom number 2 to atom number 7
Vector from atom number 3 to atom number §
Sentinel Ending group 51

Group Number 52

Vector from atom number 7 to atom number 2
Vector from atom number 4 to atom number 5
Vector from atom number 1 to atom number 5
Sentinel Ending group 52

L M Y Y N

Figure 4-5: Articulation File Structure

from the energy server, and update the display with the atoms in the new positions.

4.2.2.1.1 Request Articulation Update

Request_articulation_update is a communication utility that creates and sends a message
telling the energy server to do an articulation update. The message contains an eight-bit integer

code to tell the energy server what to do. The code three is sent to indicate that dock would like

an articulation update (Table 4-1).
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Code Function

0 Drop the connection to the energy server

1 Request energy between the protein and
drug molecules and the drug and itself

2 Request the energy server to minimize the

energy in the system (This function is not
yet implemented in the energy server)

3 Request the energy server calculate the next
articulation update

4 Request the energy server reset the
coordinates of the molecules to the original
orientation

Table 4-1: Updated list of the request codes that dock can send to the energy server including the articulation and
reset options.

The code number is followed by a set of group transformations. These transformations
contain the transformation for the entire drug molecule and the transformations for each group in
the drug that is separated by a rotatable bond. These transformations, along with the coordinates
for each atom which it already has in storage, allow the energy server to determine the actual
location of each atom in world coordinates. These values are used to calculate the interactive

forces on each atom.

4.2.2.1.2 Get Articulation Update

The get function reads the expected data from the energy server after the request has
been made. This function expects to receive a 32-bit integer which represents the size of the data
to follow. This value is calculated by the energy server and is based on the size of the drug and
protein molecules. A size of zero indicates that the articulation is done and no information will

follow.

The information following the size is the updated coordinates for the protein atoms

followed by the updated coordinates for the drug atoms. Each set of updated coordinates is three
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floats representing the X, y, and z-coordinate for an atom. Each set of coordinates is copied into
an array called atomlist which is then passed to the update display function. Get waits until it
has received all coordinates before it returns. This waiting is done with a loop that keeps reading
from the specified socket until a given number of bytes of information have been read. If all of
the information is read from the socket and the expected number of bytes have not yet been read,

the loop will continue attempting to read until new information is placed on the socket.

4.2.2.1.3 Update The Display

Once the atomlist has been filled with the updated coordinates of the protein and drug
molecules, the program builds the message to update the display. The first step in this process is
to see if the display is ready. The program reads a flag from a second socket connected to the
display server to see if it is writing a message to send back to dock. The display server needs to
send a message to dock when running DOCKER in visual mode to notify it of the location of the
drug molecule. Dock waits until the ready flag is sent. This check is skipped if we are using the
PER-Force arm because the location of the drug molecule is sent to dock directly and is passed

on to the display, so the display does not need to send a message back.

With the display server ready, the program builds the message to update the vectors in
the display. First the protein articulation file is opened. For each group in the articulation file a
message is constructed. Using the source and destination atom numbers for each vector, the
program adds the appropriate codes (Appendix A) to the message for updating the vector with
the new coordinates for those atoms. When the sentinel is reached, marking the end of the
group, the program closes the message, sends it to the display server, and starts a message for the

next group.
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During implementation, I discovered a problem with this design. If a group contains too
many vectors, the update message becomes so large it exceeds the message size limit of the
display server and the system crashes. To correct this problem I have implemented a limit of
500 vectors per update message. When building the message, the program checks to see if the
vector count is a multiple of 500, excluding zero. When this occurs the program closes the
message, transmits it to the display sefver, and starts a new message to update the remaining

vectors of the same group.

When the end of the protein articulation file is reached the drug articulation file is
opened and the process is repeated until all of the vectors in the drug molecule have been
updated. Finally, the articulation files are closed and the program checks for any user input from

the keyboard and returns to the beginning of the articulation loop.

4.2.2.1.4 Structure of the Articulation Loop

The request, get, and update functions must be executed in order, but the program can
plan ahead for the next update (Figure 4-6). The implementation of the articulation loop takes
advantage of the fact that request starts a process on the energy server that can be executed in

parallel with the update process in dock.

request articulation update
get articulation update
loop until done or keypress == ‘q’
{
request articulation update
update display
get articulation update
keypress = get character from keyboard

}

update display

Figure 4-6: Structure of the calls in the articulation loop.
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The loop starts by making a request for the first articulation update and waiting for it to
return by calling ger immediately. Once get has filled the atomlist with the first update, the
program starts the energy server calculating the next articulation update with another request.
While the energy server is running these calculations, dock runs the update function to build and
send the update messages to the display for the current articulation update (Figure 4-7). As soon
as the display is updated, the program gets the next articulation update and the loop is repeated
until there is an error, the user enters a ‘q’, or the articulation is completed. After the loop is
exited, the program updates the display with the last articulation update in the atomlist unless the

articulation is done, in which case the atomlist will be empty.

example 1
req get req update get req update get req update get update
dock TN S S S S SN S S S S SR
calc cale . Ccale calc
energy Ry B B
server
example 2 v
req get req update get req update get req update  get update
calc cale calc cale
energy - - G - - - - E E . ..
server
Time —»
req - request articulation update =mm - function is executing
get - get articulation update —— - function is waiting for data

update - update display
calc - calculate articulation update

Figure 4-7. Timing chart showing the execution overlap in the articulation loop design between dock and the energy
server. The first example shows the situation when the calculations take longer to execute than the update display
Junction and the second example shows the case when the update function takes longer than the calculations.
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4.2.2.1.5 Clearing the Energy Server Socket

The method used to get energy updates in the main dock loop is to make the energy
request at the bottom of the loop, return to the top to handle the keyboard commands, including
the articulation command, read the energy values from the energy server socket, and update the
display. This means that when the user enters the articulation loop there is energy information
waiting on the energy server socket. This information must be cleared so that the articulation
routines can receive the necessary information from the energy server to support the articulation
request. This problem is handled by reading these values out of the energy socket and throwing
them away when the articulate option is entered. I decided to throw them away for two reasons.
The first is that they will provide little to no useful information to the user. In the time between
when the user stops manipulating the drug and he/she enters the keyboard command, the main
dock loop wi.ll be executed at least once. This means that the energy values on the energy server

socket will be very close to, if not exactly the same as, the energy values currently displayed.

The second reason is that these energy values will be meaningless after the articulation
has occurred. The articulation changes the energy of the system and the user is only concerned

about the new energy value until the system is reset to its original position.

Once the articulation is complete, the program makes a request to the energy server to
replace the energy values that were thrown away with the new energy values. This is necessary
because dock expects that the energy values are waiting on the energy server socket at this point
in the main loop and executes the functions to get the energy values before it makes another

request.
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4.2.2.2 Reset Option

The reset option is also a keyboard selection, ‘o’, in the main dock loop. The letter ‘o’
was selected because the program is orienting the molecules in their original positions. The
letter ‘r’ could not be used because it had another function associated with it. This problem
highlights a larger problem with the user interface of the program in that single letter commands
are used so often through the program that additional functions must use letters that are not

representative of the functions that they perform.

The reset option returns the coordinates of each atom to its original coordinates. In dock,
the original coordinates for the drug and protein molecules are stored in the arrays Drug_mol and
Gridmol respectively. Dock copies the original coordinates into the atomlist array with the
protein molecule followed by the drug molecule and calls the update_display function to send

the update messages to the display server.

Dock also sends a message to the energy server. This message is an eight-bit code to tell
the energy server to reset its current coordinate storage arrays with the original coordinates for

the protein and drug molecules. The code for the reset option is four (Table 4-1).

The reset option does not require the program to clear the energy values from the energy
server socket as is done in the articulate option. This is because the reset code does not need to

receive any information from the energy server.

4.2.3 Energy Server

[ modified the energy server to accept commands three and four to indicate a request for
an articulation update and to reset the coordinates of the molecules’ atoms, respectively (Table

4-1). The articulation and reset functions are implemented as stubs in this project and will need
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to be updated at a later date. This is because the energy calculations were outside of the scope of
this problem as discussed in section 1.3. The intent was to demonstrate the ability of the display

system to support the graphics necessary to perform the articulation and not to implement the

actual calculations.

4.2.3.1 Articulation Stub

The articulation function is implemented as a stub for this thesis. The stub accesses a
file to read one or more sets of updated coordinates that are returned when a request for an
articulation update is made by dock. An input file called art.in is created with the correct number
of coordinates for the protein and drug that is being displayed. When the end of the input file is

reached, the stub returns the done signal as mentioned in section 4.2.2.1.2.

The articulation stub does not modify the internal storage arrays containing the
coordinates of the protein and drug atoms. Because the energy calculations are outside the scope
of this project, I did not want to create a storage structure that may or may not have supported
the energy calculations that were to be implemented later. This means that when the articulation
loop is exited, whether the molecules are in their original positions or modified positions, the
energy values that are displayed will be unchanged. The actual articulation function, once
implemented, will update the internal storage arrays with the new coordinates from the
calculations and thus, the energy server will provide a new energy value for the system when

queried for an energy update.

4.2.3.2 Reset Molecules Stub

The reset stub returns without doing anything. This is because articulation does not

modify the internal storage arrays for the protein and drug molecules so the values that it




contains are the original coordinates. The actual reset_molecules function will have to copy the
original coordinates into the internal storage arrays to ensure that it contains the same set of

coordinates as dock and the display server.

4.2.4 Display Server

The display server does not require modification to support the articulation. The virtual
world was already designed with the ability to modify its objects, in this case the vectors.
Appendix A, page A-3, has an example of a message that adds an object to the virtual world
display and modifies another object. This is the method used to modify the molecules in the

display.

4.3 Conclusion

This chapter has presented the design details for my implementation of the orientation
tool and the articulation extensions to DOCKER. The orientation tool is implemented in Motif

and provides a point-and-click interface that is similar to other windowing type applications.

The articulation extensions to DOCKER affect the preprocessing tools, dock, and the
energy server. An important aspect of the design is the communication of information between
the servers and dock. Articulation increases the message traffic between the servers significantly

as will be presented in the next chapter.

The following chapter will discuss the results of my implementation. It will include

some performance statistics and user feedback.
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5. Results

5.1 Orientation Tool

Several tests were run to determine the quality of the orientation tool. These tests
demonstrated that the requirements spelled out in Chapter Three were all met by the
implementation described in Chapter Four. My fourth assumption discussed in section 1.2 was
also proven correct because 1 was able to provide the manipulation desired by the user with

Motif.

5.1.1 User Feedback

The user’s responses to the orientation tool have been completely positive. They found
the tool useful for orienting the molecules and its interface intuitive and easy to learn and use.
These results were gathered from scientists who used the tool to support a project which required
the simulation of docking several drug molecules with a protein molecule. The tool saved them
the time of guessing the orientation of each pair of drug and protein molecules, building the files
for DOCKER, and loading the molecules into DOCKER to view only to reorient the molecules

to put them in their proper position, rebuild the DOCKER files, and reload them.

5.2 Articulation in Response to Interactive Atomic Forces in DOCKER

The implementation of articulation in DOCKER proved to meet all requirements
discussed in Chapter Three. The first three assumptions presented in section 1.2 are also proven
correct. Additional information collected on the articulation functions demonstrates the accuracy

and performance of articulation in DOCKER.
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5.2.1 Test Case Generation

With the exception of the water and carbon molecules discussed in the next section, all
test cases were randomly generated. The process used was to start with the current orientation of
the molecules, generate an arbitrary final orientation by adding a random value between negative
one and one angstrom to each x, y, and z-coordinate. With the beginning and final orientation
specified, I generated any number of steps between the two. These steps became the articulation
input file, art.in, used by the energy server. Demonstrating that DOCKER can handle any

arbitrary motion inputs during articulation also shows it can handle realistic articulation motion.

5.2.2 Articulation Accuracy

The accuracy of the implementation is demonstrated with a simple set of molecules: a
water molecule consisting of three atoms and a carbon rod consisting of ten carbon atoms. The
rod starts in a horizontal position with the water molecule above it. I calculated a series of steps
to bend the rod up to enclose the water molecule and verified that the display reflected these
events. This test demonstrates the articulation information gets from the energy server to dock

and the update message created is accurate.

5.2.3 Articulation Performance

The performance information I am interested in is the performance of the articulation
portion of the code. The articulation code consists of the functions articulate,

request_articulation_update, get _articulation_update, and update display.

Prof was used to collect the data necessary for this analysis. Prof is an operating system
profiling tool, provided with UNIX, which identifies the number of CPU cycles used by each

function.




5.2.3.1 Algorithm Complexity

Both functions request and articulate operate in constant time regardless of the number
of atoms in the system (Figure 5-1). Request is constant because the message it builds for the
energy server, consisting of the request code and drug transformation matrices, is always the
same size. Articulate only includes the overhead of coordinating calls to request, get, and update

and checking for user input from the keyboard.
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Figure 5-1: The number of CPU cycles used by the articulation functions for six test case consisting of 13,
92,154,272,397, and 608 atoms.

The get function performs in linear time proportional to the number of atoms in the
system (Figure 5-1). Adding an atom to the system increases get’s operating time by a constant
amount (i.e. the time required to read the atom from the input file, transmit it to dock, and for

dock to read the atom from the energy server socket).




The update function also performs in linear time (Figure 5-1). However, its performance
is proportional to the number of bonds in the system. In the worst case, for the biological
molecules that are used in DOCKER, an atom can have four bonds. Each bond is represented in
the virtual world as two vectors. Each vector has six coordinates which is equivalent to two
atoms. This means that the growth of update is proportional to 16 times the number of atoms in

the system in the worst case.

5.2.3.2 Distribution of Work

It is important for maintainers of DOCKER to know which functions do the bulk of the
work. As is seen in figure 5-1, the update function consistently uses more CPU cycles than the
other articulation functions. Update takes on average 89% of the total cycles used by all of these
functions (Figure 5-2). This information implies that any attempt to improve the performance of
the articulation code within dock should focus on update. This conclusion, however, is based
only on the performance of the current system with a stub for the energy calculations. The next
section will discuss how the implementation of the energy calculations will change this

conclusion.
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Figure 5-2: The percentage of the total number of CPU cycles in articulation code used by each individual
articulation function.

5.2.3.3 Future Energy Server Implementations

Future implementations in the energy server will include calculations to determine new
coordinates for each atom during articulation. This improvement requires a calculation to
determine the mutual forces between atoms in the system. Thus, for » atoms in the system,
(n(n-1))/2 forces must be calculated. If we assume each calculation takes some constant amount

of time, then the overall order of complexity for this problem is O(nz).

Since energy server operations grow at a faster rate than for update display, there is a
point where the energy server calculations require more time to complete than update. At this
point, the get function is affected because once update finishes get is called, but the energy
server is not done calculating the new coordinates. Ger must wait for the energy server to finish
and then read the new coordinates. This waiting period is equivalent to the difference between
the time taken by the energy server and the time taken by update. The difference will still be

O(’) in complexity which will cause the normally linear increase in the performance of get to
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become quadratic. This suggests that attempts to improve the performance of the articulation
may need to focus on the energy calculations with secondary emphasis on the update_display

function discussed earlier.

5.3 Conclusion

This chapter has presented the results of my implementation of articulation in DOCKER.
These results have demonstrated that my initial assumptions discussed in Chapter One were valid
and that all of the requirements presented in Chapter Three were met. The following chapter will
identify future work that should be accomplished to' extend and support the abilities of the

orientation tool and DOCKER.




6. Conclusions

6.1 Future Suggestions for the Orientation Tool

The current implementation of the orientation tool has replaced steps four, five, six,
eight, and nine in the DOCKER preprocessing stage. The next logical step is to include the file
conversion process, step three, and the process to build the DOCKER files, step seven (Figure 6-
1). This would simplify the overall DOCKER process because the user would only have to
accomplish four major steps: create and trim the molecules in Cerius?, use the orientation tool to
convert and orient the molecules and create the input files for DOCKER, run DOCKER, and do
the postprocessing analysis. Having the orientation tool perform the conversion and file creation

functions saves the user having to remember all of the individual tools necessary to accomplish

them.

1. Build molecules
in Cerius?

orig
drug
.msi

orig
protein
.msi

2. Trim molecules
using Cerius?

orig
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.msi

3. Convert files to .Ig
format using msi2lg
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Orientation Tool

Continue with
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7. Create remaining files

for DOCKER using
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g
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{ 5. Translate molecules I

A

4. Move center of mass
to the origin using center

————————— .
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Orientation Tool |

Figure 6-1: Preprocessing stage of the DOCKER process with the proposed orientation tool




The users’ desires for this tool, as presented in section 1.5.3, also include functions to
rotate a molecule about its center of mass, scoop a spherical region out of a molecule, and to
make a planar cut through the molecules. Step 2 of the DOCKER process currently includes
these functions (Figure 6-1). Adding these functions to the orientation tool would allow it to

replace step 2 in the process, encompassing almost the entire preprocessing stage.

Once these modifications are implemented, it would benefit the users to be able to
convert from any file format, not just Cerius®’s .msi format, to the .Ig format DOCKER requires.
This would provide users the freedom to use tools other than Cerius’ to design, build and trim
their molecules. There are tools currently available, such as Babel, which are designed to
convert between molecular file formats and may be useful if incorporated into the orientation

tool.

6.2 Future Suggestions for DOCKER

6.2.1 Energy Server

As mentioned earlier, the calculations necessary to compute the new coordinates for the
articulation must still be implemented, as they are outside the scope of this project. There are
two major problems with this implementation: the complexity of the calculations and the energy

model necessary.

The complexity of a straight forward implementation of the energy calculations is O(nz)
as discussed in section 5.2.2.3. This quadratic growth would suggest that alternate approaches to
the problem should be explored. Research is currently being done at AFIT to predict the final

orientation of the atoms in a protein molecule when it is folded using genetic algorithms




[KAISER96]. This approach could be used to predict the final coordinates of the atoms in the

articulation problem as well as the intermediate positions.

The energy model currently used by DOCKER is the AMBER model [WEINERS4].
The AMBER model, however, has two major disadvantages. The first is that it was only
designed to simulate nucleic acids and proteins. This limits the molecules that can be simulated
with DOCKER because the data tables only contain bond and interaction energy information for
biologically legal combinations. Simulation of molecules that contain bonds or interactions that
can not occur biologically is not possible with this model without a tremendous effort to extend

the database.

The second disadvantage of the AMBER model is that the calculations are simplified.
This simplification allows the model to perform but reduces its fidelity. This lack of fidelity is
evident in a project completed during my research. Docking positions computed with DOCKER
were analyzed by Cerius2 and the results did not match. This disagreement was determined to

be a problem introduced by the simplifications in the DOCKER model.

The AMBER model should be replaced with the more robust CHARMm energy model
[BROOKS83]. CHARMmM is designed to handle bond and interaction energy calculations that
are not included in AMBER allowing this model to handle the simulation of any molecules. It
also provides more complex calculations to accurately model the interactive atomic forces
necessary to support articulation. The implementation of the CHARMm model, along with
articulation, will make DOCKER a more versatile simulation tool by improving its overall

fidelity.
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6.2.2 Virtual World

The virtual world system is designed to handle the manipulation of the molecules as a
whole or in part, but in my opinion, it was not designed to handle the manipulation of the
individual atoms. This is evident in the fact that dock must know the structure and order of the
objects in each group to generate the update message. Dock must load additional files generated

in the preprocessing stage to have access to the necessary knowledge.

Another indication that the virtual world was not designed to allow manipulation of
individual atoms is the size of the required update message. Although the growth of the
complexity in the creation and transmission of this message is linear, it increases by
approximately 16 times the number of atoms in the system. The users of DOCKER have
expreésed the desire to view the molecules with methods other than the bond vector display
which will increase the size of the message beyond 16 times. Options for display may include
displaying a molecular surface, such as a Connolly surface [CONNOLLY83], a ball and stick
diagram emphasizing the location of atoms as well as the bonds, a smooth ribbon representing
the backbone of the molecule, and others. All of these display techniques require that several
points be specified to define a surface. The virtual world would require that these points,
possibly thousands to create a smooth and continuous surface, be included in an update message
that would be transmitted to the display server for each update. This load would drive system

performance to an unacceptable level for the user.

The two problems discussed here suggest that the virtual world may not be the best
display tool for DOCKER. Although there are advantages to having a display that is
independent of the domain being displayed, I feel it would benefit DOCKER to move to a

molecular display system that has knowledge of the problem domain. Motif could be used to
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design this display. It provides the functions to draw points, lines, filled arcs, and filled
polygons which could be used to draw any of the display options desired by the user. This
implementation would require that the designer provide control for the grouping of atoms to
allow each group to be manipulated individually. The advantage of this design is the reduction
in the amount of information that is required to be communicated between dock and the display
server. A change can be affected in the display by sending the new set of atomic coordinates and

the display type desired by the user as opposed to the current virtual world message.

Another option for the display server is to use Inventor. Inventor provides hierarchical
grouping of objects and the ability to display points, lines, polygons and custom designed
objects. This option is listed second in my recommendations for the same reasons the orientation
tool was not developed in Inventor (see section 3.4.1). Results obtained from the initial design
of the orientation tool have suggested that an Inventor program does not perform well on the
machine that the display server is currently implemented on. An improvement in hardware may
provide the ability to support an Inventor display tool in the future, but the Motif design could be

implemented now.

6.2.3 Articulation

The articulation implemented with this project accomplishes the first step in the
progression desired by the users (see section 1.5.1), to have articulation at the users request. The
next step was to update the energy model as discussed above. This leads us to their goal for real-
time articulation, allowing the molecules to flex at all times including during user manipulation
of the drug. Implementation of real-time articulation will require the interaction calculations be

done quickly to avoid slowing the overall processing speed. The display system will also require




modification as discussed above to simplify the messages necessary to effect a change in the
display because the number of messages required will increase significantly. Even with this
change, the overhead of articulation may slow the response time of the system to a point that will

be unacceptable to the user as was mentioned in their requirements in Chapter Three.

6.2.4 User Interface

As mentioned in section 4.2.2.2, DOCKER’s user interface leaves much to be desired. 1
would suggest a major redesign of the interface. The main problem is the long list of single
letter keyboard commands that may or may not relate to the function that they perform, making
it difficult for the user to remember. [ would suggest that the user interface be a graphical
interface consisting of pulldown menus with commands grouped by function, similar to that of
the orientation tool. These menus could be activated with the mouse or the PER-Force arm. The
arm would be the best option because it is already being used as the input device for the
manipulation of the drug molecule. This would save the user having to change input devices to
interact with the commands. Even if the user has to interface with the command menus using the
mouse, this user interface will make it much easier for the users to learn and interact with the

system.

This interface could be designed and implemented using Motif. All of the functions
mentioned above can easily be supported as was demonstrated in the implementation of the
orientation tool. This change would require that dock be replaced with the new user interface
however. All of the functions that are performed with keyboard selections would become
callbacks associated with functions in the pulldown menus. An interesting advantage that will

come out of this proposed change is the calculation of the interaction energy in the system.
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Currently, the energy is recalculated every time the dock loop is repeated whether the molecules
have moved or not. Using Motif callbacks, the energy functions would only be called when the

molecules are moved.

6.3 Conclusion

This thesis has made two major contributions to the DOCKER tool. The first is the
implementation of the orientation tool. This tool has simplified the preprocessing stage of the
DOCKER process. It provides the ability to visualize the molecules during the orientation
process, eliminating the guessing that was done to orient the molecules previously. The result of
the implementation of the tool is a reduction in the amount of time spent in the preprocessing

stage of the DOCKER process.

The second contribution is the demonstration of the feasibility of adding articulation in
response to interactive atomic forces to DOCKER. The results have shown that the program can
handle the increase in message traffic to support the articulation at the users request making my
initial assumption in section 1.2 correct. However, as presented in previous sectio;us, I see
problems with the current system being able to support multiple display options and constant
real-time articulation. These are options that the users would like to see added to DOCKER in
the future. As discussed in the previous sections, some modifications will need to be made, such
as changing from the AMBER energy model to the CHARMm energy model and using a
molecular display system rather that the virtual world, to allow the options to be supported in the

future.
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A. Virtual World Message Structure

To communicate with the virtual world display system the user must build a message

packet using the virtual world structure defined in this appendix (extracted from vw_packets in

the include directory) and transmit it to the socket that the display is connected to. The contents

of the packet will specify the addition of a new object or modification of an existing object. The

format of the packet is a sequential data stream organized as follows:

+-- Header
| ID/data
Packet >--+ ID/data
| ..
+-- |D/data
Contents Description Data type
HEADER Number of chunks (64 bytes each) vw_BLOCKNUM
1 World info vw_SELECTOR
1 Object adding vw_SELECTOR
ID Object ID number (Required) vw_OBJECT_ID
NAME Object name (may be NULL) vw_ASCII_STRING
1 Transformation mat (defautt 1) vw_SELECTOR
MATRIX vw_UNC_XFORM
2 Visibility (defauit 1) vw_SELECTOR
VISIBLE vw_SELECTOR
3 Set default for later parts vw_SELECTOR
1 Default Color (front-face) vw_SELECTOR
RED GREEN BLUE vw_UNC_COLOR
2 Default Backface color (if any) vw_SELECTOR
RED GREEN BLUE vw_UNC_COLOR
0 End of defaults vw_SELECTOR
4 UNC object (numbered as created) vw_SELECTOR
1 ASCI! label for this thing vw_SELECTOR
LABEL vw_UNC_LABEL
2 Point (not implemented?) vw_SELECTOR
POINT vw_THREEVEC?
3 Line (two points) vw_SELECTOR
POINT1 POINT2 vw_SIXVEC
4 Triangle (Three pts, normals) vw_SELECTOR
TRIANGLE vw_UNC_TRIANGLE
5 (reserved) vw_SELECTOR
0 End of parts description vw_SELECTOR
0 End of one object build vw_SELECTOR

Routine
read_packet
read_packet
Get_World_Info
Collect_Object_Info

Get_Default_Values

Collect_Object_Info
Get_Object_Parts
(Not implemented?)
(Not implemented?)
Get_Object_Parts

Collect_Object_Info




ID
1
MATRIX
2
VISIBLE
3
4
1
NUMBER
LABEL
2
NUMBER
POINT
3
NUMBER

Object modification info

Object ID number

Transform Matrix

Visibility

defaults (CAN NOT BE MODIFIED)

UNC Object type
An ASCII label in object

Point (not implemented?)

Line

POINT1 POINT2

4
NUMBER
TRIANGLE

5

0
0
4

1
PARENT ID
CHILD ID

2
PARENT ID
CHILD ID

0

0

4

1
2

1
NAME
2
ITEM

RESPONSE

0

0

0

Triangle (not implemented?)

(Reserved)

End of Part list

End of Object Modifications
Inter-object link modification
Add link

Remove link (not implemented?)

End of link mod info

End of World info

Message

Start sending position updates
Menu item

Create new menu

Add item to current menu

Done specifying menus
End of messages
End of ID/data information
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vw_SELECTOR
vw_OBJECT_ID
vw_SELECTOR
vw_UNC_XFORM
ww_SELECTOR
vw_SELECTOR
vw_SELECTOR
vw_SELECTOR
vw_SELECTOR
vw_UNC_PARTNO
vw_UNC_LABEL
vw_SELECTOR
vw_UNC_PARTNO?
vw_THREEVEC?
vw_SELECTOR
vw_UNC_PARTNO
vw_SIXVEC
vw_SELECTOR
vw_UNC_PARTNO
vw_UNC_TRIANGLE
vw_SELECTOR
vw_SELECTOR
vw_SELECTOR
vw_SELECTOR
vw_SELECTOR
vw_OBJECT_ID
vw_OBJECT_ID
vw_SELECTOR
vw_OBJECT_ID
vw_OBJECT_ID
vw_SELECTOR
vw_SELECTOR
vw_SELECTOR
vw_SELECTOR
vw_SELECTOR
vw_SELECTOR
vw_ASCII_STRING
vw_SELECTOR
vw_ASCII_STRING
vw_ASCII_STRING
vw_SELECTOR
vw_SELECTOR
vw_SELECTOR

Get_World_Info
Do_Modify_Object

'l;/'I‘odify_Object_Part
'('n:)t implemented)
Modify_Object_Part
'('th implemented)

Modify_Object_Part

Do_Modify_Object
Get_World_Info
Do_Link

A

(not implemented)
(not implemented)
(not implemented)
Do_Link
Get_World_Info
read_packet
Get_Message
Get_Message
Get_Menu_Message
Get_Menu_Message

Get_Menu_Message
Get_Message
read_packet




Several objects can be added or modified in a single message. An example of a message

that defines a new object named 'hello’ and modifies an object with the ID number of 3 follows:

1
1

1
1
'hello\0’
3
1

100 100 100

©L.aNozwPo

wPwh

=N

7779989

0
0

0
0

55101010

vw_BLOCKNUM
vw_SELECTOR

vw_SELECTOR
vw_OBJECT_ID

VW_ASCII_STRING

vw_SELECTOR
vw_SELECTOR

vw_UNC_COLOR

vw_SELECTOR
vw_SELECTOR
vw_SELECTOR
vw_SIXVEC

vw_SELECTOR
vw_SELECTOR
vw_SELECTOR
vw_SELECTOR

vw_SELECTOR
vw_OBJECT_ID
vw_SELECTOR
vw_SELECTOR

vw_UNC_PARTNO

vw_SIXVEC
vw_SELECTOR
vw_SELECTOR

vw_SELECTOR
vw_SELECTOR

Size of this packet in 64 byte chunks
World info

Object adding

value of this object's ID

Name of the object (NULL-terminated ASCII)
Set defaults

Set default color

Defauit color = 100,100,100 (r,g,b)
End of default setting

Add part of the object

Add a line to the object

The vector to be displayed

End of parts description

Set visibility

Visibility is ON

End of add object

Object modification

value of this object's ID
Modify part of the object
Modify a line in the object
Number of the line to modify
The new vector

End of parts list

End of object modification

End of World info
End of the packet
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B. Modified Files Listing

This appendix contains a listing of the files that were modified/created to implement
articulation in DOCKER. They are organized by the DOCKER directory in which they are

located. A short description with each file summarizes the changes made to it.

B.1 Dock Directory

B.1.1 Action.c

This file is one of the two places that keyboard input is handled, the other is dock. Since
both routines receive the input value, both functions must be prepared to handle a legal input
value. This file was modified to handle the articulation, ‘a’, and reset, ‘0’, options. Since dock
handles these options, this file only prints a message to give the user feedback to let him/her

know that the keyboard input was received.

B.1.2 Articulate.c

This file was added to implement the articulation loop and the reset code. When dock
receives an ‘a’ or ‘o’ it calls the articulate or reset_molecules functions in this file. The
articulate function also calls the request_articulation_update and get articulation_update

functions in the file eservercom.c and the function update_display in the file dservercom.c.

B.1.3 Dock.c

The only modifications necessary were to implement the code to handle the ‘a’ and ‘o’
options from the keyboard. The code to handle the articulate option reads the energy server
socket to clear the energy values that are queued from the last energy request. It then calls the

articulation function in articulate.c. When this call returns, an energy request is sent to the




energy server so the energy values that were cleared are replaced for the get function that is

called later in dock.

The code to handle the reset option is only a call to the reset function in the file
articulate.c. Since nothing is read from the energy socket, we need not clear the energy values as

is done in the articulation section of the code.

B.1.4 Dservercom.c

The modification made to this file was the addition of the update_display function. This
function takes the atomlist which contains the new coordinates for each atom in the protein and
drug molecules and builds an update message, using the virtual world format, to modify the
vectors in the display. The function uses the articulation files for each molecule that were build
in the preprocessing stage by the files groups_to_vw.c and protein_to_vw.c to build this

message.

B.1.5 Eservercom.c

This file was modified with the addition of two functions: request_articulation_update
and get_articulation_update. The request function sends the request code for articulation, three,
to the energy server followed by the transformation matrices for the drug molecule. The getl
function reads the updated coordinated from the energy server and puts them in the atomlist for

use by the update_display function in the dservercom.c file.

B.2 Include Directory
B.2.1 Atomlist.h
This file was created by splitting the file molecules.h into two parts. This file now

contains only the structure definitions. The reason for the split was that [ needed to include the




information now in atomlisth and grid.h but there was a conflicting definition of ATOM
between molecules.h and grid.h. The definition for ATOM was left in molecules.h and the

information I needed was moved to atomlist.h and included with grid.h.

B.2.2 Molecules.h

This file was split into two pieces. This file contains the constant definitions and the
atomlist.h file contains the structure definitions. The file atomlist.h is included to ensure that
files including molecules.h get all of the information that they are expecting from the original

design.

B.3 Paragon Directory
B.3.1 Articulation.c

This file was added to provide the articulation and reset function for the energy server.
The articulation function is a stub that reads the new coordinates from the file art.in and returns

them to dock. The reset stub does nothing but print a message to the log file.

B.3.2 Eserver.c
This file was modified to handle the codes for an articulation request, three, and a reset
request, four. The main case statement was expanded to handle these codes and call the

calc_articulation and reset_molecules functions in the articulation.c file.

B.3.3 Get_command.c
The only modification to this file was in the comments. They were modified to reflect

the new options that are available to the user.

B.3.4 Protos.h




This file contains the prototypes for every function in the energy server. It was modified

to contain the calc_articulation and reset_molecules functions which were added.

B.4 World Directory
B.4.1 Groups to_vw.c

This file was modified to produce an articulation file for the drug molecule. The file
contains the information necessary for dock to build an update message for the vectors in the

display.

B.4.2 Protein_to_vw.c

This file was modified to produce an articulation file for the protein molecule.
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